
ABSTRACT
GEOVIA Whittle has implemented a new pit optimization engine based on the pseudoflow algorithm. This pseudoflow 
algorithm creates the same optimal pits achieved using the traditional Lerchs-Grossmann algorithm (LG), but with far 
more time efficiency. The LG method of pit optimization has been the industry standard and it is understood that strategic 
mine planners will be reluctant to trust a new method. To address their concerns, this paper explains the mathematical 
concepts on which pseudoflow has been built and how this has been implemented to solve mining problems. A 
comparative study with LG is detailed, showing the improved performance of pit optimization using pseudoflow
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FROM LERCHS-GROSSMANN TO PSEUDOFLOW:  
A SHORT REVIEW
The general pit optimization procedure works based on two 
inputs: block values and pit slopes, where the slopes introduce 
constraints on removal precedence of the blocks. The output 
of optimization is essentially a selection of blocks representing 
pits of valid slopes that yield maximum profit. Investigations 
for solving the pit optimization problem using a computer 
algorithm started in the 1960s. The Lerchs-Grossmann 
algorithm [1] was published in 1965 and was one of the 
earliest methods to produce the optimal pit. In the 1980s, the 
first industrial package with the LG algorithm was implemented 
in Whittle Three-D. The LG method has become the industry 
standard for pit optimization and also part of the university 
syllabus for mining engineers. The main issue with the LG 
method is the significant amount of time that is required to 
determine the optimal pit as the block models and pits increase 
in size and scale.

After the publication of LG, finding the optimal pit was no 
longer a challenging task. In academia, significant effort has 
been focused on searching for more efficient pit optimization 
algorithms. Many promising alternatives have been delivered. 
In 1976, Picard proved that the pit optimization problem could 
be solved with more efficient maximum flow algorithms [2]. 
In 1988, Goldberg and Tarjan developed a highly efficient 
maximum flow algorithm called the Push-Relabel method 
[3]. Notably, in 2008, Hochbaum published a pseudoflow 
algorithm [4], which was demonstrated to be more efficient 
than the LG and other prevalent maximum flow algorithms, 
such as the Push- Relabel method [5], [6]. GEOVIA has 
recognized the power of the pseudoflow algorithm and has 
developed a unique version for GEOVIA Whittle.

MATHEMATICAL CONCEPTS BEHIND PSEUDOFLOW
Understanding how the pseudoflow algorithm works requires 
a deep knowledge of mathematics and computer science. It 
involves two layers of questions:

1. How to model pit optimization with mathematical 
concepts, such as “set” and “graph”

2. How the algorithm solves the mathematical (graph) 
problems

Understanding the first question requires an introduction to 
some “graph” concepts. The second question is a specialized 
question in operational research and will not be covered in this 
paper. More detailed explanations of these questions can be 
found in reference papers [4] and [6]. The following section 
addresses the first question.

Graph Concepts and Pit Optimization
The pit optimization process typically uses a block model with 
fixed block values as an input. The pit slopes requirement 
and mining sequence can be expressed by the dependencies 
among blocks. For example, in Figure 1-1, a simple 2D block 
model consists of 10 blocks indexed from “a” to “j” (the value 
is marked on the top-right corner of a block). To maintain 45 
degree slopes, a typical block dependency is like that shown 
in Figure 1-2, i.e., to mine block “c”, the blocks “g”, “h”, and “i” 
must be removed first. The optimization problem is to find a 
set of blocks that respects the block dependency constraints 
and gives the highest total block value. 

This problem is commonly represented by a mathematical 
concept called a “graph”. A graph is a conceptual structure 
consisting of nodes and arcs. In the pit optimization case, 
a node represents a block, and an arc between two nodes 
represents the dependency relation of two blocks for the 
excavation sequence and slope constraint. A node can carry 
a weight value, to represent the value of the block. Figure 2 
shows a graph representation of the pit optimization problem 
in Figure 1.

We will use this example to demonstrate how to use the 
graph-based method to get the optimal pit. The concept is 
general and can be extended to more complex cases. Even for 
creating pits with a large 3D block model, the same process 
applies, but with an increased dimension and number of 
nodes and arcs.

Maximum Closure and Optimal Pit
The precise definition of a pit with valid slopes is termed a 
“closed set” or “closure”. It refers to a set of nodes that have 
no arcs out of the set. For example, in Figure 3, the set {b, f, 
g, h} is a closed set and {d, h, i, j} is another closed set; but set 
{b, c} is not closed, because “b” has available arcs to “f”, “g”, 
“h”; and “c” has an available arc to “g”, “h”, “i”.
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Maximum Closure and Optimal Pit
The precise definition of a pit with valid slopes is termed a “closed set” or “closure”. It refers to 
a set of nodes that have no arcs out of the set. For example, in Figure 3, the set {b, f, g, h} is a closed 
set and {d, h, i, j} is another closed set; but set {b, c} is not closed, because “b” has available arcs to 
“f”, “g”, “h”; and “c” has an available arc to “g”, “h”, “i”. 

A closed set of blocks is free to be removed and does not depend on the removal of other 
blocks. So, finding an optimal pit is the process of finding a closure with maximum total value. 
This problem is called a maximum closure problem. It is easy to observe that the optimal pit 
consists of block {b, c, f, g, h, i}, which gives total value 3. The Lerchs-Grossmann algorithm works 
by directly searching for the maximum closure.

Figure 3. Closure and maximum closure in a graph

Maximum Flow Method—An Alternative to Generating an Optimal Pit
Research has proven that searching directly for the maximum closure is not the most efficient 
method of finding it. A more efficient method has been proven that involves solving a variant 
version of a graph, i.e., flow graph or flow network. For ease of understanding, an example of  
a flow graph would be a network of pipes for sending water from one city to another. A flow graph 
contains two additional special nodes, the source node (where the flow starts) and the sink node 
(where the flow finishes). Also, each arc, like a pipe, has a capacity property and allows a flow, 
up to the capacity limit, to pass through. The flow and capacity along an arc must be positive.  
The nodes represent a joining of pipes, so the amount of flow into a node must equal the total 
flow out of the node, which is called the flow balance criteria. In this network, searching for 
a flow distribution with maximum total flows that move into the sink node (or equally go out 
of the source node) is termed the maximum flow problem. It has been proved that the maximum 
flow problem is equivalent to the maximum closure problem [2].

To get a flow graph, we need to make a few changes to the graph in Figure 2: 

• Add two special nodes: source node and sink node

•  For all the existing arcs (blue), assign infinite capacities
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A closed set of blocks is free to be removed and does not 
depend on the removal of other blocks. So, finding an optimal 
pit is the process of finding a closure with maximum total 
value. This problem is called a maximum closure problem. It 
is easy to observe that the optimal pit consists of block {b, c, 
f, g, h, i}, which gives total value 3. The Lerchs-Grossmann 
algorithm works by directly searching for the maximum 
closure. 

Figure 3. Closure and maximum closure in a graph.
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Maximum Flow Method—An Alternative to 
Generating an Optimal Pit
Research has proven that searching directly for the maximum 
closure is not the most efficient method of finding it. A more 
efficient method has been proven that involves solving a 
variant version of a graph, i.e., flow graph or flow network. For 
ease of understanding, an example of a flow graph would be a 
network of pipes for sending water from one city to another. 
A flow graph contains two additional special nodes, the source 
node (where the flow starts) and the sink node (where the flow 
finishes). Also, each arc, like a pipe, has a capacity property and 
allows a flow, up to the capacity limit, to pass through. The 
flow and capacity along an arc must be positive.

The nodes represent a joining of pipes, so the amount of flow 
into a node must equal the total flow out of the node, which 
is called the flow balance criteria. In this network, searching 
for a flow distribution with maximum total flows that move 
into the sink node (or equally go out of the source node) is 
termed the maximum flow problem. It has been proved that 
the maximum flow problem is equivalent to the maximum 
closure problem [2].

To get a flow graph, we need to make a few changes to the 
graph in Figure 2:

• Add two special nodes: source node and sink node

• For all the existing arcs (blue), assign infinite capacities

• Add links from source to all positive nodes, with the 
capacities equal to the weight of the nodes

• Add links from negative nodes to sink, with the capacities 
equal to the absolute weight value of the nodes

• Remove the weights on nodes

The converted flow graph is shown in Figure 4-1. We also give 
an example of arbitrarily assigned flows that satisfy the flow 
balance, shown in Figure 4-2.

The relation between the flow and mining concepts is not 
as straightforward as the relation between a closure and a 
pit. One way to describe this is to consider the ore as the 
water stored in a source city that as much as possible needs 
to be sent to a destination city through a pipe network. The 
source station connects all the ore blocks, and the destination 
connects all the wastes. In the network, the economic value 
of a block is not reflected on a node, but is measured by the 
capacity of the pipe (arc) that connects it with the source 
or the destination city. Since the pipes representing block 
dependency have unlimited capacity, the bottlenecks of the 
networks are the pipes connected to the source or destination. 
Three types of pipes can be identified: “waste-to-destination”, 
“source-to-ore”, and “block-to-block”. The flow assignment 
in each type of pipe can be interpreted in different mining 
senses, respectively:

1. Pushing flow from a “waste node” to a destination is 
similar to using the underlying ore value to pay for the 
waste block. When a flow saturates a pipe that links to the 
destination (flow amount equals the capacity), it means 
that the corresponding waste block can be paid off by its 
underlying ores, for example, the node “f”, “g” and “h” 
in Figure 4-2. Otherwise, if a “waste-to-destination pipe” 
is not saturated, then the waste block is not paid off by 
the ores, such as node “a”, “i”, “j” and “e” in Figure 4-2. 



The flow balance criteria imply that the flow that goes 
into a “waste node” cannot exceed its out-pipe capacity 
(absolute block value), thus guaranteeing that the waste 
block is not paid for multiple times.

2. Pushing flows from a source into an “ore node” means 
passing the ore value down, within the capacity limits, to 
pay for the necessary wastes. If a “source-to-ore” pipe is 
not saturated while at the same time the flow is balanced 
and no more can be pushed downstream, such as pipe 
“s-b” in Figure 4-2, this means that the ore is sufficient to 
pay off the overlying wastes and has residual value left. 
Otherwise, if an ore block is not high enough to pay for 
the linked wastes, then the pipe connected to the source 
would be saturated, such as pipe “s-d” in Figure 4-2.

3. The unlimited capacity pipes that link block-to-block guide 
the flow to the related “waste nodes”, and allow the ore value 
passing through freely to pay for all the overlying wastes.  
 
When the maximum flow is found, it ensures that all the 
ores have been utilized to pay for the necessary wastes. 
As an opposite example, in Figure 4-2, the node “c” is 
not considered to be passing any flow through. So the 
total flow is 4 and has not reached the maximum flow of 
5 (shown in the following section), therefore additional 
distribution is needed to reach the maximum flow.
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Figure 5. Finding optimal pits by in maximum flow graph

Assume that a maximum flow solution is found as shown in 
Figure 5-1, by any possible method, say pseudoflow. To get 
the optimal pit, we still need to convert the maximum flow 
solution to a maximum closure. To do this, we first break the 
saturated arcs (blue dashed arcs in Figure 5-2). This separates 
the sink node from the waste blocks that can be paid off by 
the underlying ore blocks (such as blocks “f”, “g”, “h” and “i”), 
and also cuts the paths from the source node to the ore blocks 
that cannot afford the overlying wastes values (such as block 
“d”). Then we search all the nodes that can be reached by the 
source node, as shown in Figure 5-2. Those nodes (except the 
source) are the maximum closure set. The reason for doing this 
relates to the “max-flow min-cut theorem” [7] and the proof 
of equivalency of maximum flow and maximum closure in the 
research paper [2].
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Maximum Flow Problem and Pseudoflow Algorithm
In the description above, we introduced how to model a pit optimization problem with the graph 
concept, specifically using maximum closure and maximum flow representations. We also noted 
that LG is a method to solve the maximum closure problem. The remaining question is, what is 
the procedure to find a maximum flow solution? In general, the procedure is to iteratively change 
the flows along the paths until the maximum flow is found. There are many maximum flow 
algorithms, and each algorithm uses different ways to distribute the flow with varying efficiency. 
The pseudoflow algorithm has been demonstrated to be one of the most efficient methods to 
date with respect to the time used to solve a defined problem set.

Understanding the procedure of pseudoflow and the reason for its outstanding efficiency needs 
very specialized mathematical knowledge. This document is not designed to be an exhaustive 
explanation of the pseudoflow algorithm, and more details are available in reference [4].

Pseudoflow Engine in GEOVIA Whittle
GEOVIA Whittle is powered by a new implementation of the pseudoflow algorithm with an 
optimized data structure. The new engine significantly speeds up the pit generation process 
compared to our traditional LG engine. A computation comparison of pseudoflow vs. LG is 
discussed below. 

COMPUTATION COMPARISON AND APPLICATION CONCERNS

TESTING DATA AND PARAMETERS
To demonstrate the computation speed of the Whittle pseudoflow engine, a series of testing 
block models were used (see Table 1 and Figure 6). The 45 degree slope angle is adopted for all 
cases. The number of arcs created for this slope setting is listed in Table 1. Note that with Whittle, 
the actual number of blocks and arcs used in the optimization is called active blocks and active 
arcs. (Active blocks represent the blocks that contain parcels, and all the precedent blocks need 
to be removed to access the blocks with parcels). 
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Tests were done for two scenarios: one scenario uses one revenue factor (RF) to generate one pit 
shell; the other uses nine RFs to create nine pit shells. The creation of multiple pit shells is basically 
a repetition using the pseudoflow/LG across multiple RFs.

The test computer was a laptop with Intel Core i7 2.7GHz CPU and 32 GB RAM. 

Table 1. Testing Data descriptions

Figure 6. The size of testing data

Testing Results
The computation time for the datasets and parameters are plotted in Figures 7 and 8, and 
listed in Table 2. Note that the collected computation time reflects the overall process of pit 
optimization with Whittle, including reading and writing data, as well as pseudoflow/LG process. 
The pseudoflow engine is faster than LG in all cases. The boost of speed is more significant as the 
block model becomes larger, especially for the 21.3 million block case, with the time reduced from 
15 hours to 12 minutes using pseudoflow. Also, when creating nine pit shells, the speed gain from 
pseudoflow for creating each single pit shell accumulates and shows an even more remarkable 
overall improvement. 

Figure 7. Computation time comparison for one revenue factor
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procedure to find a maximum flow solution? In general, the 
procedure is to iteratively change the flows along the paths 
until the maximum flow is found. There are many maximum 
flow algorithms, and each algorithm uses different ways to 
distribute the flow with varying efficiency.

The pseudoflow algorithm has been demonstrated to be one 
of the most efficient methods to date with respect to the time 
used to solve a defined problem set.

Understanding the procedure of pseudoflow and the reason for 
its outstanding efficiency needs very specialized mathematical 
knowledge. This document is not designed to be an exhaustive 
explanation of the pseudoflow algorithm, and more details are 
available in reference [4].

Pseudoflow Engine in GEOVIA Whittle
GEOVIA Whittle is powered by a new implementation of 
the pseudoflow algorithm with an optimized data structure. 
The new engine significantly speeds up the pit generation 
process compared to our traditional LG engine. A computation 
comparison of pseudoflow vs. LG is discussed below.

COMPUTATION COMPARISON  
AND APPLICATION CONCERNS 

Testing Data and Parameters 

To demonstrate the computation speed of the Whittle 
pseudoflow engine, a series of testing block models were 
used (see Table 1 and Figure 6). The 45 degree slope angle 
is adopted for all cases. The number of arcs created for this 
slope setting is listed in Table 1. Note that with Whittle, the 
actual number of blocks and arcs used in the optimization is 
called active blocks and active arcs. (Active blocks represent 
the blocks that contain parcels, and all the precedent blocks 
need to be removed to access the blocks with parcels).

Tests were done for two scenarios: one scenario uses one 
revenue factor (RF) to generate one pit shell; the other uses 
nine RFs to create nine pit shells. The creation of multiple pit 
shells is basically a repetition using the pseudoflow/LG across 
multiple RFs.

The test computer was a laptop with Intel Core i7 2.7GHz CPU 
and 32 GB RAM.

Testing Results
The computation time for the datasets and parameters are 
plotted in Figures 7 and 8, and listed in Table 2. Note that the 
collected computation time reflects the overall process of pit 
optimization with Whittle, including reading and writing data, 
as well as pseudoflow/LG process. The pseudoflow engine 
is faster than LG in all cases. The boost of speed is more 
significant as the block model becomes larger, especially for 
the 21.3 million block case, with the time reduced from 15 
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hours to 12 minutes using pseudoflow. Also, when creating 
nine pit shells, the speed gain from pseudoflow for creating 
each single pit shell accumulates and shows an even more 
remarkable overall improvement. 

Table 1: Testing data descriptions.



Factors Impacting the Speed of Optimization
In general, the computation time of the optimization process 
can be impacted by a variety of factors including:

• The number of blocks

• The number of arcs, related to slope setting and block size

• Distribution of block values

• Computer hardware and system

The testing done here is not exhaustive for all factors, but 
focuses on showing the time comparison over different sized 
block models, which is usually the dominant factor. For some 
small or intermediate block models, the pseudoflow engine 
may not produce significant speed improvement over LG. The 
reason is that the LG engine is already very fast in solving these 
cases, and the majority of processing time is taken up by data 
reading/writing instead of optimization.

But for larger sized block models, the speed improvements are 
significant.

Precision Question
With the recent exposure of pseudoflow in the mining industry, 
one common question continues to be raised: “Does pseudoflow 
always produce exactly the same result as LG?”

The answer is “Yes” and “No”. Mathematically, “Yes”, it has 
been proven that the pseudoflow algorithm and LG generate 
the same result. When it relates to software implementation, 
it is not always true. The reason is that the Whittle pseudoflow 
engine approximates the value of blocks as integers, while LG 
deals with them as floating point numbers. In both cases, using 
floating point numbers or integers, the block value encoding 
will introduce imprecision in the block value. The pseudoflow 
engine neglected the value in the scale of cents, which is 
usually marginal to the block value. In some rare cases, this 
approximation can result in a pit slightly different from the 
LG result. However, even if different pits occur, the pit values 
should be very close. In the context of strategic mine planning, 
considering that the actual block values have much greater 
uncertainty when comparing to the marginal value neglected 
here, the approximation of value hardly impacts on the NPV 
report and is definitely tolerable.

Memory Requirements
The pseudoflow engine utilizes more physical memory via 
RAM than LG does. For some large cases, the pseudoflow 
engine may reach the memory limit of the computer. In 
general, the memory usage grows almost linearly with the 
number of active arcs, as shown in Figure 9. The information 
of active arcs is reported in the pit optimization message tab 
for both LG and pseudoflow. Table 3 lists typical memory 
requirements to efficiently solve problems of different sizes 
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Table 2. Computation time of pseudoflow vs. LG

(measured by the number of active arcs). Here, the term 
“efficiently” means “processing without using virtual 
memory”. Using virtual memory can drastically slow down 
the optimization and therefore add significant time to the 
overall optimization process. On the other hand, a slightly 
larger case can also be solved by using a small amount of 
virtual memory, with a tradeoff of speed. For example, with 
a 32 GB RAM computer, a problem with less than 509 million 
active arcs can be efficiently solved; and a problem of 550 
million active arcs is still solvable by using virtual memory. 

Figure 9. Memory consumption of pseudoflow engine for the cases 
of different number of active arcs

Table 3. The pseudoflow process limit (in number of arcs) for 
computers of different memories

RAM (GB) 8 16 32 48 64

Active arcs (Millions) 103 238 509 779 1049

CONCLUSION
The pseudoflow algorithm is a fast new vehicle for delivering 
optimal pit solutions. In Whittle, the pseudoflow engine has 
inherited the same usability as the entrusted Pit Optimization 
Engine, which allows users to configure comprehensive 
practical slope settings for a variety of geotechnical needs, 
and achieves identical results to the LG method. Speed 
improvements open up the opportunity to solve problems 
that were previously too large for Whittle and the traditional 
LG engine. Furthermore, the pseudoflow algorithm also 
enables some interesting collaboration possibilities.
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Our 3DEXPERIENCE® platform powers our brand 
applications, serving 12 industries, and provides 
a rich portfolio of industry solution experiences. .

Dassault Systèmes, the 3DEXPERIENCE® Company, is a catalyst for human 
progress. We provide business and people with collaborative virtual environments to 
imagine sustainable innovations. By creating virtual twin experiences of the real world 
with our 3DEXPERIENCE platform and applications, our customers can redefine the 
creation, production and life-cycle-management processes of their offer and thus have 
a meaningful impact to make the world more sustainable. The beauty of the Experience 
Economy is that it is a human-centered economy for the benefit of all –consumers, 
patients and citizens.

Dassault Systèmes brings value to more than 300,000 customers of all sizes, in all 
industries, in more than 150 countries. For more information, visit www.3ds.com

Dassault Systèmes is now connecting GEOVIA’s offerings to 
the likes of SIMULIA® Process Automation and Simulation 
technologies on the 3DEXPERIENCE® platform. This enables 
running hundreds to thousands of “What if?” scenarios 
and analyzing them within the same timeframe that it 
took to run a handful in the past. With the 3DEXPERIENCE 
platform, it is possible to even further automate and improve 
the performance seen with GEOVIA Whittle, and GEOVIA 
continues searching for faster, practical and easy-to-use 
strategic mine planning solutions for the future.
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